Peter Roscoe Research
Child and Spousal Support in Ontario
Jan 2008
Pre 2004 Cases
|
Low Payors |
Mid Payors |
High Payors |
Total Payors |
Total Spousal Support Payments ( mean / median ) in 1000 $s per year |
5.3 / 5.4 |
11.5 / 12.0 |
42.3 / 36.0 |
22.3 / 12.0 |
Total Combined Support Payments ( mean / median ) in 1000 $s per year |
7.7 / 8.2 |
18.1 / 18.4 |
63.4 / 56.4 |
35.7 / 22.7 |
Spousal Support Only Payments ( mean / median ) in 1000 $s per year |
5.9 / 6.0 |
15.7 / 14.4 |
46.7 / 36.0 |
23.8 / 13.9 |
|
Low Payors |
Mid Payors |
High Payors |
Total Payors |
Payors Claimed Income ( mean / median ) in 1000 $ s per year |
38.6 / 36.0 |
61.0 / 57.0 |
234.0 / 119.0 |
124.2 / 63.8 |
Payors Court Ordered Income ( mean / median ) in 1000 $ s per year |
41.4 / 46.0 |
69.1 / 60.0 |
252.8 / 136.0 |
135.6 / 71.5 |
Recipients Income ( mean / median ) in 1000 $ s per year |
21.7 / 23.0 |
20.7 / 17.1 |
24.3 / 10.0 |
22.2 / 15.8 |
|
Low Payors |
Mid Payors |
High Payors |
Total Payors |
Payors Claimed Income ( mean / median ) in 1000 $ s per year |
41.9 / 40.0 |
60.5 / 55.0 |
191.1 / 136.0 |
113.9 / 66.5 |
Payors Court Ordered Income ( mean / median ) in 1000 $ s per year |
45.8 / 58.0 |
69.4 / 60.0 |
215.2 / 148.0 |
129.0 / 78.5 |
Recipients Income ( mean / median ) in 1000 $ s per year |
26.7 / 25.2 |
22.8 / 22.7 |
31.4 / 12.5 |
26.6 / 15.0 |
|
Low Payors |
Mid Payors |
High Payors |
Total Payors |
Payors Claimed Income ( mean / median ) in 1000 $ s per year |
38.6 / 36.0 |
68.6 / 59.5 |
358.1 / 100.5 |
146.3 / 57.0 |
Payors Court Ordered Income ( mean / median ) in 1000 $ s per year |
36.6 / 36.0 |
62.2 / 59.5 |
246.1 / 132.0 |
112.5 / 57.0 |
Recipients Income ( mean / median ) in 1000 $ s per year |
19.7 / 18.0 |
15.8 / 13.1 |
27.3 / 10.0 |
21.6 / 15.0 |
Income per Year |
Total Payments |
Recipients .Incomes |
Payors Court Ordered Incomes |
Payors Claimed Incomes |
1 - 4999 |
15 (13.8 %) |
16 (20.2 %) |
0 ( 0.0 %) |
3 ( 3.0 %) |
5000 - 9999 |
23 (21.1 %) |
8 (10.1 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
10,000 14,999 |
23 (21.1 %) |
14 (17.7 %) |
0 ( 0.0 %) |
2 ( 2.0 %) |
15,000 19,999 |
9 ( 8.3 %) |
7 ( 8.9 %) |
1 ( 1.0 %) |
1 ( 1.0 %) |
20,000 24,999 |
8 ( 7.3 %) |
9 (11.3 %) |
3 ( 3.0 %) |
3 ( 3.0 %) |
25,000 - 29,999 |
1 ( 0.9 %) |
5 ( 6.3 %) |
1 ( 1.0 %) |
2 ( 2.0 %) |
30,000 34,999 |
7 ( 6.4 %) |
6 ( 7.6 %) |
4 ( 4.0 %) |
4 ( 4.0 %) |
35,000 39,999 |
4 ( 3.7 %) |
4 ( 5.1 %) |
4 ( 4.0 %) |
4 ( 4.0 %) |
40,000 44,999 |
3 ( 2.7 %) |
3 ( 3.8 %) |
1 ( 1.0 %) |
1 ( 1.0 %) |
45,000 49,999 |
2 ( 1.8 %) |
1 ( 1.3 %) |
8 ( 8.0 %) |
10 ( 10.0 %) |
50,000 54,999 |
4 ( 3.7 %) |
4 ( 5.1 %) |
10 (10.0 %) |
8 ( 8.0 %) |
55,000 59,999 |
1 ( 0.0 %) |
0 ( 0.0 %) |
4 ( 4.0 %) |
6 ( 6.0 %) |
60,000 64,999 |
3 ( 2.7 %) |
0 ( 0.0 %) |
8 ( 8.0 %) |
7 ( 7.0 %) |
65,000 69,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
3 ( 3.0 %) |
3 ( 3.0 %) |
70,000 74,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
4 ( 4.0 %) |
4 ( 4.0 %) |
75,000 79,999 |
2 ( 1.8 %) |
0 ( 0.0 %) |
4 ( 4.0 %) |
4 ( 4.0 %) |
80,000 84,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
4 ( 4.0 %) |
4 ( 4.0 %) |
85,000 89,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 2.0 %) |
2 ( 2.0 % ) |
90,000 94,999 |
1 ( 0.9 %) |
1 ( 1.3 %) |
1 ( 1.0 %) |
0 ( 0.0 % ) |
95,000 99,999 |
0 (0.0 %) |
0 ( 0.0 %) |
5 ( 5.0 %) |
5 ( 5.0 %) |
100,000 104,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 2.0 %) |
2 ( 2.0 %) |
105,000 109,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.0 %) |
1 ( 1.0 %) |
110,000 114,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.0 %) |
1 ( 1.0 %) |
115,000 119,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.0 %) |
1 ( 1.0 %) |
120,000 124,999 |
0 (0.0 %) |
0 ( 0.0 %) |
2 ( 2.0 %) |
2 ( 2.0 %) |
125,000 129,999 |
1 ( 0.9 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
130,000 134,999 |
1 ( 0.9 %) |
0 ( 0.0 %) |
3 ( 3.0 %) |
1 ( 1.0 %) |
135,000 139,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
140,000 144,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.0 %) |
1 ( 1.0 %) |
145,000 149,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 2.0 %) |
2 ( 2.0 %) |
150,000 154,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.0 %) |
1 ( 1.0 %) |
155,000 159,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
160,000 164,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
165,000 169,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.0 %) |
170,000 174,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.0 %) |
0 ( 0.0 %) |
175,000 179,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.0 %) |
1 ( 1.0 %) |
180,000 184,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.0 %) |
1 ( 1.0 %) |
185,000 189,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 2.0 %) |
1 ( 1.0 %) |
190,000 194,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.0 %) |
1 ( 1.0 %) |
195,000 199,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
200,000 299,999 |
0 ( 0.0 %) |
1 ( 1.3 %) |
2 ( 2.0 %) |
2 ( 2.0 %) |
300,000 399,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
4 ( 4.0 %) |
4 ( 4.0 % ) |
400,000 499,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.0 %) |
0 ( 0.0 %) |
Over 500,000 |
0 ( 0.0 %) |
0 ( 0.0 %) |
3 ( 3.0 %) |
3 ( 3.0 %) |
Total of All Males |
109 |
79 |
98 |
98 |
Income per Year |
Total Payments |
Recipients .Incomes |
Payors Court Ordered Incomes |
Payors Claimed Incomes |
1 - 4999 |
0 ( 0.0 %) |
7 (14.9 %) |
0 ( 0.0 %) |
2 ( 3.0 %) |
5000 - 9999 |
7 (10.6 %) |
5 (10.6 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
10,000 14,999 |
7 (10.6 %) |
8 (17.0 %) |
0 ( 0.0 %) |
2 ( 3.0 %) |
15,000 19,999 |
15 (22.7 %) |
4 ( 8.5 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
20,000 24,999 |
10 (15.1 %) |
5 (10.6 %) |
1 ( 1.5 %) |
2 ( 3.0 %) |
25,000 - 29,999 |
4 ( 6.1 %) |
2 ( 4.3 %) |
1 ( 1.5 %) |
2 ( 3.0 %) |
30,000 34,999 |
5 ( 7.6 %) |
4 ( 8.5 %) |
1 ( 1.5 %) |
1 ( 1.5 %) |
35,000 39,999 |
0 ( 0.0 %) |
2 ( 4.3 %) |
1 ( 1.5 %) |
1 ( 1.5 %) |
40,000 44,999 |
3 ( 4.5 %) |
3 ( 6.4 %) |
1 ( 1.5 %) |
2 ( 3.0 %) |
45,000 49,999 |
1 ( 1.5 %) |
1 ( 2.1 %) |
4 ( 6.1 %) |
6 ( 9.1 %) |
50,000 54,999 |
0 ( 0.0 %) |
3 ( 6.4 %) |
7 (10.6 %) |
5 ( 7.6 %) |
55,000 59,999 |
1 ( 1.5 %) |
0 ( 0.0 %) |
3 ( 4.5 %) |
5 ( 7.6 %) |
60,000 64,999 |
3 ( 4.5 %) |
0 ( 0.0 %) |
6 ( 9.1 %) |
4 ( 6.1 %) |
65,000 69,999 |
1 ( 1.5 %) |
0 ( 0.0 %) |
3 ( 4.5 %) |
2 ( 3.0 %) |
70,000 74,999 |
1 ( 1.5 %) |
0 ( 0.0 %) |
2 ( 3.0 %) |
2 ( 3.0 %) |
75,000 79,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
4 ( 6.1 %) |
3 ( 4.5 %) |
80,000 84,999 |
1 ( 1.5 %) |
0 ( 0.0 %) |
3 ( 4.5 %) |
3 ( 4.5 %) |
85,000 89,999 |
1 ( 1.5 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 % ) |
90,000 94,999 |
1 ( 1.5 %) |
1 ( 2.1 %) |
0 ( 0.0 %) |
0 ( 0.0 % ) |
95,000 99,999 |
0 (0.0 %) |
0 ( 0.0 %) |
4 ( 6.1 %) |
5 ( 7.6 %) |
100,000 104,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.5 %) |
0 ( 0.0 %) |
105,000 109,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
110,000 114,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.5 %) |
1 ( 1.5 %) |
115,000 119,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.5 %) |
1 ( 1.5 %) |
120,000 124,999 |
0 (0.0 %) |
0 ( 0.0 %) |
2 ( 3.0 %) |
0 ( 0.0 %) |
125,000 129,999 |
1 ( 1.5 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
130,000 134,999 |
1 ( 1.5 %) |
0 ( 0.0 %) |
3 ( 4.5 %) |
1 ( 1.5 %) |
135,000 139,999 |
1 ( 1.5 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.5 %) |
140,000 144,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.5 %) |
1 ( 1.0 %) |
145,000 149,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 3.0 %) |
2 ( 3.0 %) |
150,000 154,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 3.0 %) |
0 ( 0.0 %) |
155,000 159,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
160,000 164,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
165,000 169,999 |
1 ( 1.5 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.5 %) |
170,000 174,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
175,000 179,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.5 %) |
1 ( 1.5 %) |
180,000 184,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
185,000 189,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 3.0 %) |
1 ( 1.5 %) |
190,000 194,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.5 %) |
1 ( 1.5 %) |
195,000 199,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
200,000 299,999 |
0 ( 0.0 %) |
1 ( 2.1 %) |
2 ( 3.0 %) |
2 ( 3.0 %) |
300,000 399,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
3 ( 4.5 %) |
3 ( 4.5 % ) |
400,000 499,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.5 %) |
0 ( 0.0 %) |
Over 500,000 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 3.0 %) |
2 ( 3.0 %) |
Total of All Males |
66 |
47 |
66 |
66 |
Income per Year |
Total Payments |
Recipients .Incomes |
Payors Court Ordered Incomes |
Payors Claimed Incomes |
1 - 4999 |
4 ( 9.1 %) |
6 (40.0 %) |
0 ( 0.0 %) |
1 ( 3.0 %) |
5000 - 9999 |
9 (20.5 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
10,000 14,999 |
9 (20.5 %) |
2 (13.3 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
15,000 19,999 |
4 ( 9.1 %) |
3 (20.0 %) |
1 ( 3.0 %) |
1 ( 3.0 %) |
20,000 24,999 |
3 ( 6.8 %) |
1 ( 6.7 %) |
2 ( 6.1 %) |
1 ( 3.0 %) |
25,000 - 29,999 |
1 ( 2.3 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
30,000 34,999 |
5 (11.4 %) |
1 ( 6.7 %) |
3 ( 9.1 %) |
1 ( 3.0 %) |
35,000 39,999 |
2 ( 4.5 %) |
0 ( 0.0 %) |
3 ( 9.1 %) |
3 ( 9.1 %) |
40,000 44,999 |
1 ( 2.3 %) |
1 ( 6.7 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
45,000 49,999 |
1 ( 2.3 %) |
0 ( 0.0 %) |
4 (12.1 %) |
3 ( 9.1 %) |
50,000 54,999 |
2 ( 4.5 %) |
0 ( 0.0 %) |
3 ( 9.1 %) |
3 ( 9.1 %) |
55,000 59,999 |
1 ( 2.3 %) |
0 ( 0.0 %) |
1 ( 3.0 %) |
1 ( 3.0 %) |
60,000 64,999 |
1 ( 2.3 %) |
0 ( 0.0 %) |
3 ( 9.1 %) |
3 ( 9.1 %) |
65,000 69,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 3.0 %) |
70,000 74,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 6.1 %) |
2 ( 6.1 %) |
75,000 79,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 3.0 %) |
80,000 84,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 3.0 %) |
1 ( 3.0 %) |
85,000 89,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 6.1 %) |
2 ( 6.1 % ) |
90,000 94,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 3.0 %) |
0 ( 0.0 % ) |
95,000 99,999 |
0 (0.0 %) |
0 ( 0.0 %) |
1 ( 3.0 %) |
0 ( 0.0 %) |
100,000 104,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 3.0 %) |
2 ( 6.1 %) |
105,000 109,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 3.0 %) |
0 ( 0.0 %) |
110,000 114,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
115,000 119,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 6.1 %) |
120,000 124,999 |
0 (0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
125,000 129,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
130,000 134,999 |
1 ( 2.3 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
135,000 139,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
140,000 144,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
145,000 149,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
150,000 154,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
155,000 159,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
160,000 164,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
165,000 169,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
170,000 174,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 3.0 %) |
0 ( 0.0 %) |
175,000 179,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
180,000 184,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 3.0 %) |
1 ( 3.0 %) |
185,000 189,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
190,000 194,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
195,000 199,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
200,000 299,999 |
0 ( 0.0 %) |
1 ( 6.7 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
300,000 399,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 3.0 %) |
1 ( 3.0 % ) |
400,000 499,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
Over 500,000 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 3.0 %) |
1 ( 3.0 %) |
Total of All Males |
44 |
15 |
33 |
33 |
|
Low Payors |
Mid Payors |
High Payors |
Total Payors |
Total Spousal Support Payments ( mean / median ) in 1000 $s per year |
5.5 / 4.8 |
12.4 / 12.0 |
36.7 / 30.0 |
22.4 / 14.4 |
Total Combined Support Payments ( mean / median ) in 1000 $s per year |
8.7 / 8.8 |
19.4 / 20.7 |
60.6 / 42.9 |
42.2 / 27.5 |
Spousal Support Only Payments ( mean / median ) in 1000 $s per year |
6.5 / 6.0 |
16.5 / 14.7 |
58.7 / 42.0 |
24.9 / 17.8 |
|
Low Payors |
Mid Payors |
High Payors |
Total Payors |
Payors Claimed Income ( mean / median ) in 1000 $ s per year |
38.3 / 36.0 |
64.6 / 63.8 |
117.9 / 89.9 |
84.5 / 72.0 |
Payors Court Ordered Income ( mean / median ) in 1000 $ s per year |
43.6 / 39.8 |
70.6 / 70.0 |
176.6 / 110.0 |
114.1 / 81.0 |
Recipients Income ( mean / median ) in 1000 $ s per year |
20.1 / 15.3 |
19.0 / 16.8 |
18.8 / 16.0 |
19.1 / 15.9 |
|
Low Payors |
Mid Payors |
High Payors |
Total Payors |
Payors Claimed Income ( mean / median ) in 1000 $ s per year |
25.7 / 28.0 |
63.0 / 64.8 |
120.9 / 92.0 |
93.5 / 75.0 |
Payors Court Ordered Income ( mean / median ) in 1000 $ s per year |
40.9 / 40.4 |
70.1 / 71.7 |
180.0 / 110.0 |
130.9 / 89.3 |
Recipients Income ( mean / median ) in 1000 $ s per year |
19.0 / 16.0 |
28.3 / 30.0 |
31.4 / 12.5 |
21.4 / 20.0 |
|
Low Payors |
Mid Payors |
High Payors |
Total Payors |
Payors Claimed Income ( mean / median ) in 1000 $ s per year |
44.3 / 39.8 |
66.3 / 60.0 |
107.0 / 72.5 |
146.3 / 57.0 |
Payors Court Ordered Income ( mean / median ) in 1000 $ s per year |
45.0 / 39.8 |
70.1 / 65.0 |
163.7 / 130.0 |
87.8 / 70.0 |
Recipients Income ( mean / median ) in 1000 $ s per year |
22.8 / 15.0 |
11.5 / 9.0 |
18.1 / 16.7 |
16.7 / 15.0 |
Income per Year |
Total Payments |
Recipients .Incomes |
Payors Court Ordered Incomes |
Payors Claimed Incomes |
1 - 4999 |
19 (13.3 %) |
22 (22.3 %) |
0 ( 0.0 %) |
8 ( 6.4 %) |
5000 - 9999 |
22 (15.4 %) |
11 (11.2 %) |
0 ( 0.0 %) |
1 ( 0.8 %) |
10,000 14,999 |
35 (24.5 %) |
9 ( 9.1 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
15,000 19,999 |
17 (11.9 %) |
13 (13.2 %) |
0 ( 0.0 %) |
2 ( 1.0 %) |
20,000 24,999 |
11 ( 7.7 %) |
10 (10.2 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
25,000 - 29,999 |
3 ( 2.1 %) |
6 ( 6.1 %) |
4 ( 3.2 %) |
5 ( 4.0 %) |
30,000 34,999 |
14 ( 9.8 %) |
7 ( 7.1 %) |
6 ( 4.9 %) |
6 ( 4.8 %) |
35,000 39,999 |
5 ( 3.5 %) |
7 ( 7.1 %) |
3 ( 2.4 %) |
4 ( 3.2 %) |
40,000 44,999 |
3 ( 2.1 %) |
6 ( 6.1 %) |
3 ( 2.4 %) |
4 ( 3.2 %) |
45,000 49,999 |
2 ( 1.4 %) |
2 ( 2.0 %) |
5 ( 4.1 %) |
6 ( 4.8 %) |
50,000 54,999 |
1 ( 0.7 %) |
2 ( 2.0 %) |
11 ( 8.9 %) |
12 ( 9.6 %) |
55,000 59,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
5 ( 4.1 %) |
5 ( 4.0 %) |
60,000 64,999 |
3 ( 2.1 %) |
1 ( 1.0 %) |
5 ( 4.1 %) |
5 ( 4.0 %) |
65,000 69,999 |
2 ( 1.4 %) |
0 ( 0.0 %) |
1 ( 0.8 %) |
1 ( 0.8 %) |
70,000 74,999 |
1 ( 0.7 %) |
2 ( 2.0 %) |
8 ( 6.5 %) |
9 ( 7.2 %) |
75,000 79,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
4 ( 3.2 %) |
5 ( 4.0 %) |
80,000 84,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
13 (10.6 %) |
12 ( 9.6 %) |
85,000 89,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
3 ( 2.4 %) |
2 ( 1.6 % ) |
90,000 94,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 1.6 %) |
2 ( 1.6 % ) |
95,000 99,999 |
0 (0.0 %) |
0 ( 0.0 %) |
5 ( 4.1 %) |
5 ( 4.0 %) |
100,000 104,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
9 ( 7.3 %) |
4 ( 3.2 %) |
105,000 109,999 |
2 ( 1.4 %) |
0 ( 0.0 %) |
4 ( 3.2 %) |
4 ( 3.2 %) |
110,000 114,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
3 ( 2.4 %) |
1 ( 0.8 %) |
115,000 119,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
120,000 124,999 |
0 (0.0 %) |
0 ( 0.0 %) |
3 ( 2.4 %) |
2 ( 1.6 %) |
125,000 129,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
3 ( 2.4 %) |
3 ( 2.4 %) |
130,000 134,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 0.8 %) |
1 ( 0.8 %) |
135,000 139,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 0.8 %) |
1 ( 0.8 %) |
140,000 144,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
145,000 149,999 |
1 ( 0.7 %) |
0 ( 0.0 %) |
1 ( 0.8 %) |
1 ( 0.8 %) |
150,000 154,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
3 ( 2.4 %) |
0 ( 0.0 %) |
155,000 159,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
160,000 164,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 0.8 %) |
0 ( 0.0 %) |
165,000 169,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 1.6 %) |
170,000 174,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 1.6 %) |
1 ( 0.8 %) |
175,000 179,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 0.8 %) |
1 ( 0.8 %) |
180,000 184,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
185,000 189,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
190,000 194,999 |
1 ( 0.7 %) |
0 ( 0.0 %) |
1 ( 0.6 %) |
0 ( 0.0 %) |
195,000 199,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 0.8 %) |
200,000 299,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
6 ( 4.9 %) |
6 ( 4.8 %) |
300,000 399,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 0.8 %) |
1 ( 0.8 % ) |
400,000 499,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 0.8 %) |
0 ( 0.0 %) |
Over 500,000 |
0 ( 0.0 %) |
0 ( 0.0 %) |
3 ( 2.4 %) |
1 ( 0.8 %) |
Total of All Males |
143 |
98 |
123 |
125 |
Income per Year |
Total Payments |
Recipients .Incomes |
Payors Court Ordered Incomes |
Payors Claimed Incomes |
1 - 4999 |
0 ( 0.0 %) |
14 (23.4 %) |
0 ( 0.0 %) |
5 ( 6.7 %) |
5000 - 9999 |
6 ( 7.1 %) |
4 ( 7.3 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
10,000 14,999 |
8 ( 9.5 %) |
2 ( 3.6 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
15,000 19,999 |
4 ( 4.7 %) |
6 (10.9 %) |
0 ( 0.0 %) |
1 ( 1.3 %) |
20,000 24,999 |
18 (21.4 %) |
5 ( 9.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
25,000 - 29,999 |
8 ( 9.5 %) |
6 (10.9 %) |
1 ( 1.3 %) |
3 ( 4.0 %) |
30,000 34,999 |
5 ( 5.9 %) |
3 ( 5.4 %) |
2 ( 2.6 %) |
2 ( 2.6 %) |
35,000 39,999 |
9 (10.7 %) |
4 ( 7.3 %) |
0 ( 0.0 %) |
1 ( 1.3 %) |
40,000 44,999 |
2 ( 2.4 %) |
6 (10.9 %) |
2 ( 2.6 %) |
2 ( 2.6 %) |
45,000 49,999 |
6 ( 7.1 %) |
2 ( 3.6 %) |
3 ( 4.0 %) |
5 ( 6.7 %) |
50,000 54,999 |
3 ( 3.5 %) |
1 ( 1.8 %) |
4 ( 5.3 %) |
4 ( 5.3 %) |
55,000 59,999 |
1 ( 1.2 %) |
0 ( 0.0 %) |
4 ( 5.3 %) |
4 ( 5.3 %) |
60,000 64,999 |
2 ( 2.4 %) |
0 ( 0.0 %) |
3 ( 4.0 %) |
2 ( 2.6 %) |
65,000 69,999 |
3 ( 3.5 %) |
0 ( 0.0 %) |
1 ( 1.3 %) |
1 ( 1.3 %) |
70,000 74,999 |
1 ( 1.2 %) |
2 ( 3.6 %) |
5 ( 6.7 %) |
7 ( 9.2 %) |
75,000 79,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 2.6 %) |
3 ( 4.0 %) |
80,000 84,999 |
1 ( 1.2 %) |
0 ( 0.0 %) |
9 (12.0 %) |
8 (10.6 %) |
85,000 89,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 2.6 %) |
2 ( 2.6 % ) |
90,000 94,999 |
1 ( 1.2 %) |
0 ( 0.0 %) |
2 ( 2.6 %) |
2 ( 2.6 % ) |
95,000 99,999 |
1 ( 1.2 %) |
0 ( 0.0 %) |
4 ( 5.8 %) |
4 ( 5.8 %) |
100,000 104,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
5 ( 6.7 %) |
1 ( 1.3 %) |
105,000 109,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 2.6 %) |
2 ( 2.6 %) |
110,000 114,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 2.6 %) |
0 ( 0.0 %) |
115,000 119,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
120,000 124,999 |
0 (0.0 %) |
0 ( 0.0 %) |
2 ( 2.6 %) |
1 ( 1.3 %) |
125,000 129,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
3 ( 4.0 %) |
3 ( 4.0 %) |
130,000 134,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
135,000 139,999 |
1 ( 1.5 %) |
0 ( 0.0 %) |
1 ( 1.3 %) |
1 ( 1.3 %) |
140,000 144,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
145,000 149,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.3 %) |
1 ( 1.3 %) |
150,000 154,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.3 %) |
0 ( 0.0 %) |
155,000 159,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
160,000 164,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.3 %) |
0 ( 0.0 %) |
165,000 169,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.3 %) |
170,000 174,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 2.6 %) |
1 ( 1.3 %) |
175,000 179,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 1.3 %) |
1 ( 1.3 %) |
180,000 184,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
185,000 189,999 |
1 ( 1.2 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 1.5 %) |
190,000 194,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
195,000 199,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
200,000 299,999 |
2 ( 2.4 %) |
0 ( 0.0 %) |
6 ( 8.0 %) |
5 ( 6.7 %) |
300,000 399,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 % ) |
400,000 499,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
Over 500,000 |
0 ( 0.0 %) |
0 ( 0.0 %) |
3 ( 4.0 %) |
1 ( 1.3 %) |
Total of All Males |
84 |
55 |
75 |
76 |
Income per Year |
Total Payments |
Recipients .Incomes |
Payors Court Ordered Incomes |
Payors Claimed Incomes |
1 - 4999 |
4 ( 6.7 %) |
7 (17.1 %) |
0 ( 0.0 %) |
3 ( 6.2 %) |
5000 - 9999 |
9 (15.0 %) |
6 (14.6 %) |
0 ( 0.0 %) |
1 ( 2.1 %) |
10,000 14,999 |
15 (25.0 %) |
7 (17.1 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
15,000 19,999 |
7 (11.6 %) |
7 (17.7 %) |
0 ( 0.0 %) |
1 ( 2.1 %) |
20,000 24,999 |
8 (13.3 %) |
5 ( 12.2 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
25,000 - 29,999 |
1 ( 1.7 %) |
0 ( 0.0 %) |
3 ( 6.2 %) |
2 ( 4.2 %) |
30,000 34,999 |
3 ( 5.0 %) |
4 ( 9.8 %) |
4 ( 8.3 %) |
4 ( 8.3 %) |
35,000 39,999 |
1 ( 1.7 %) |
3 ( 7.3 %) |
3 ( 6.2 %) |
3 ( 6.2 %) |
40,000 44,999 |
1 ( 1.7 %) |
0 ( 0.0 %) |
1 ( 2.1 %) |
1 ( 2.1 %) |
45,000 49,999 |
3 ( 5.0 %) |
0 ( 0.0 %) |
2 ( 4.2 %) |
1 ( 2.1 %) |
50,000 54,999 |
2 ( 3.3 %) |
1 ( 2.4 %) |
7 (14.5 %) |
8 (16.5 %) |
55,000 59,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 2.1 %) |
1 ( 2.1 %) |
60,000 64,999 |
3 ( 5.0 %) |
1 ( 2.4 %) |
2 ( 4.2 %) |
3 ( 6.2 %) |
65,000 69,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
70,000 74,999 |
1 ( 1.7 %) |
0 ( 0.0 %) |
3 ( 6.2 %) |
2 ( 4.2 %) |
75,000 79,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 4.2 %) |
2 ( 4.2 %) |
80,000 84,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
4 ( 8.3 %) |
4 ( 8.3 %) |
85,000 89,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 % ) |
90,000 94,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 % ) |
95,000 99,999 |
0 (0.0 %) |
0 ( 0.0 %) |
1 ( 2.1 %) |
1 ( 2.1 %) |
100,000 104,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
4 ( 8.3 %) |
3 ( 6.2 %) |
105,000 109,999 |
1 ( 1.7 %) |
0 ( 0.0 %) |
2 ( 4.2 %) |
2 ( 4.2 %) |
110,000 114,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 2.1 %) |
1 ( 2.1 %) |
115,000 119,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
120,000 124,999 |
0 (0.0 %) |
0 ( 0.0 %) |
1 ( 2.1 %) |
1 ( 2.1 %) |
125,000 129,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
130,000 134,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 2.1 %) |
1 ( 2.1 %) |
135,000 139,999 |
1 ( 1.7 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
140,000 144,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
145,000 149,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
150,000 154,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
2 ( 4.2 %) |
0 ( 0.0 %) |
155,000 159,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
160,000 164,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
165,000 169,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
170,000 174,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
175,000 179,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
180,000 184,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
185,000 189,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
190,000 194,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
195,000 199,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 2.1 %) |
1 ( 2.1 %) |
200,000 299,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 2.1 %) |
1 ( 2.1 %) |
300,000 399,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 2.1 %) |
1 ( 2.1 % ) |
400,000 499,999 |
0 ( 0.0 %) |
0 ( 0.0 %) |
1 ( 2.1 %) |
0 ( 0.0 %) |
Over 500,000 |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
0 ( 0.0 %) |
Total of All Males |
60 |
41 |
48 |
48 |
n = 42 mean = 3524.6 median = 3000.0 SD = 2297 p = 0.0
Third Quartile = 4500. First Quartile = 1775.
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 1.1100E+04 1.0500E+04
800.0 1000. 1000. 1230. 1500. 1500. 1500. 1500. 1700. 1700. 1800. 2000. 2100. 2500. 2500. 2500. 2500. 2500. 2702. 2800. 3000. 3000. 3000. 3000. 3400. 3500. 3600. 4000. 4000. 4400. 4500. 4500. 4500. 4900. 5000. 5000. 5300. 6500. 6500. 7500. 1.0500E+04 1.1100E+04
n = 48 mean = 960.7 median = 1000.0 SD = 440 p = 0.04
Third Quartile = 1188. First Quartile = 700.0
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 2000. 2000
200.0 250.0 300.0 350.0 400.0 400.0 450.0 500.0 500.0 500.0 700.0 700.0 700.0 713.0 750.0 750.0 750.0 750.0 835.0 900.0 900.0 900.0 900.0 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1035. 1100. 1150. 1200. 1200. 1300. 1500. 1500. 1500. 1500. 1531. 1700. 1800. 2000. 2000
n = 19 mean = 442.7 median = 450.0 SD = 212 p = 0.78
Third Quartile = 600.0 First Quartile = 275.0
55.00 100.0 200.0 227.0 275.0 300.0 400.0 400.0 405.0 450.0 500.0 500.0 600.0 600.0 600.0 600.0 600.0 800.0 800.0
n = 109 mean = 1858.3 median = 1000.0 SD = 1971 p = 0.78
Third Quartile = 2500. First Quartile = 650.0
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 1.1100E+04 1.0500E+04 7500. 6500. 6500. 5300
55.00 100.0 200.0 200.0 227.0 250.0 275.0 300.0 300.0 350.0 400.0 400.0 400.0 400.0 405.0 450.0 450.0 500.0 500.0 500.0 500.0 500.0 600.0 600.0 600.0 600.0 600.0 700.0 700.0 700.0 713.0 750.0 750.0 750.0 750.0 800.0 800.0 800.0 835.0 900.0 900.0 900.0 900.0 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1035. 1100. 1150. 1200. 1200. 1230. 1300. 1500. 1500. 1500. 1500. 1500. 1500. 1500. 1500. 1531. 1700. 1700. 1700. 1800. 1800. 2000. 2000. 2000. 2100. 2500. 2500. 2500. 2500. 2500. 2702. 2800. 3000. 3000. 3000. 3000. 3400. 3500. 3600. 4000. 4000. 4400. 4500. 4500. 4500. 4900. 5000. 5000. 5300. 6500. 6500. 7500. 1.0500E+04 1.1100E+04
n = 27 mean = 5316 median = 4700 SD = 3200 p = 0.0
Third Quartile = 7000. First Quartile = 2550
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 1.3775E+04
2200. 2224. 2272. 2400. 2500. 2500. 2550. 2650. 2881. 3400. 3583. 3700. 4000. 4700. 5000. 5200. 5400. 5600. 6000. 6600. 7000. 7100. 7300. 1.0500E+04 1.1000E+04 1.1500E+04 1.3775E+04
n = 32 mean = 1510.7 median = 1532.0 SD = 348 p = 0.95
Third Quartile = 1822. First Quartile = 1262
855.0 926.0 1000. 1008. 1072. 1164. 1200. 1250. 1296. 1300. 1326. 1379. 1396. 1426. 1448. 1486. 1578. 1586. 1592. 1599. 1653. 1662. 1672. 1805. 1828. 1881. 1900. 1996. 2000. 2000. 2006. 2052
n = 7 mean = 642.7 median = 683.0 SD = 127
448.0 512.0 607.0 683.0 700.0 749.0 800.0
n = 66 mean = 2975.4 median = 1890.0 SD = 2841 p = 0.0
Third Quartile = 3612. First Quartile = 1299.
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 1.3775E+04 1.1500E+04 1.1000E+04 1.0500E+04 7300. 7100
448.0 512.0 607.0 683.0 700.0 749.0 800.0 855.0 926.0 1000. 1008. 1072. 1164. 1200. 1250. 1296. 1300. 1326. 1379. 1396. 1426. 1448. 1486. 1578. 1586. 1592. 1599. 1653. 1662. 1672. 1805. 1828. 1881. 1900. 1996. 2000. 2000. 2006. 2052 2200. 2224. 2272. 2400. 2500. 2500. 2550. 2650. 2881. 3400. 3583. 3700. 4000. 4700. 5000. 5200. 5400. 5600. 6000. 6600. 7000. 7100. 7300. 1.0500E+04 1.1000E+04 1.1500E+04 1.3775E+04
n = 15 mean = 3893.3 median = 3000.0 SD = 2218 p = 0.0
Third Quartile = 4500. First Quartile = 2500.
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 1.1100E+04
2100. 2500. 2500. 2500. 2500. 2800. 3000. 3000. 3500. 4000. 4500. 4500. 4900. 5000. 1.1100E+04
n = 16 mean = 1306.0 median = 1200.0 SD = 378 p = 0.40
Third Quartile = 1523. First Quartile = 1000
835.0 900.0 1000. 1000. 1000. 1000. 1035. 1200. 1200. 1500. 1500. 1500. 1531. 1700. 2000. 2000
n = 12 mean = 494.8 median = 500.0 SD = 213 p = 0.75
55.00 227.0 300.0 400.0 450.0 500.0 500.0 600.0 600.0 600.0 600.0 800.0 800.0
n = 44 mean = 1948.5 median = 1350.0 SD = 1943 p = 0.0
Third Quartile = 2500. First Quartile = 650.0
Outliers are 1.5*IQR above the third quartile or below the first quartile. Following Tukey, the following data points are outliers: 1.1100E+04
55.00 227.0 300.0 400.0 450.0 500.0 500.0 600.0 600.0 600.0 600.0 800.0 800.0 835.0 900.0 1000. 1000. 1000. 1000. 1035. 1200. 1200. 1500. 1500. 1500. 1531. 1700. 2000. 2000. 2100. 2500. 2500. 2500. 2500. 2800. 3000. 3000. 3500. 4000. 4500. 4500. 4900. 5000. 1.1100E+04
n = 38 mean = 252.8 median = 136.0 SD = 412 p = 0.0
Third Quartile = 237.8 First Quartile = 84.78
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 2500. 890.0 706.0
37.60 66.00 67.00 71.00 75.00 78.00 79.00 80.00 84.10 85.00 98.00 98.90 100.0 102.0 107.0 120.0 120.0 132.0 132.0 140.0 146.0 150.0 151.0 177.0 184.0 186.0 189.0 194.0 227.0 270.0 300.0 315.0 360.0 388.0 400.0 706.0 890.0 2500.
n = 43 mean = 69.1 median = 60.0 SD = 30.0 p = 0.0
Third Quartile = 84.00 First Quartile = 50.00
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 170.0 145.0
20.00 34.00 44.00 45.00 45.90 46.00 47.00 48.00 48.60 50.00 50.00 50.00 51.00 51.00 52.00 52.30 53.80 54.40 55.00 57.00 59.00 60.00 60.00 62.00 63.00 63.50 64.00 66.00 71.00 73.80 75.40 82.00 84.00 85.20 90.00 95.00 96.00 96.00 110.0 115.0 133.0 145.0 170.0
n = 17 mean = 41.4 median = 46.0 SD = 16.1 p = 0.32
Third Quartile = 55.50 First Quartile = 29.45
18.90 22.00 24.00 27.90 31.00 32.00 33.10 36.00 36.00 36.50 48.00 49.00 53.00 58.00 62.50 64.10 72.00
n = 98 mean = 135.6 median = 71.5 SD = 272 p = 0.0
Third Quartile = 123.0 First Quartile = 50.00
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 2500. 890.0 706.0 400.0 388.0 360.0 315.0 300.0 270.0
18.90 20.00 22.00 24.00 27.90 31.00 32.00 33.10 34.00 36.00 36.00 36.50 37.60 44.00 45.00 45.90 46.00 47.00 48.00 48.00 48.60 49.00 50.00 50.00 50.00 51.00 51.00 52.00 52.30 53.00 53.80 54.40 55.00 57.00 58.00 59.00 60.00 60.00 62.00 62.50 63.00 63.50 64.00 64.10 66.00 66.00 67.00 71.00 71.00 72.00 73.80 75.00 75.40 78.00 79.00 80.00 82.00 84.00 84.10 85.00 85.20 90.00 95.00 96.00 96.00 98.00 98.90 100.0 102.0 107.0 110.0 115.0 120.0 120.0 132.0 132.0 133.0 140.0 145.0 146.0 150.0 151.0 170.0 177.0 184.0 186.0 189.0 194.0 227.0 270.0 300.0 315.0 360.0 388.0 400.0 706.0 890.0 2500
n = 38 mean = 234.1 median = 119.0 SD = 417 p = 0.0
Third Quartile = 206.2 First Quartile = 74.00
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 2500. 890.0 706.0
0.000 31.00 37.60 45.00 46.00 55.00 66.50 67.00 71.00 75.00 77.00 79.00 80.00 84.10 85.00 98.00 102.0 107.0 118.0 120.0 132.0 140.0 146.0 151.0 169.0 177.0 184.0 186.0 194.0 243.0 270.0 300.0 315.0 360.0 388.0 706.0 890.0 2500.
n = 43 mean = 61.0 median = 57.0 SD = 27.6 p = 0.14
Third Quartile = 75.40 First Quartile = 47.00
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 0.000 145.0
0.000 10.00 20.00 20.00 25.00 34.00 44.00 45.00 45.90 46.00 47.00 48.00 48.60 50.00 50.00 51.00 52.00 52.30 53.80 54.40 55.00 57.00 59.00 60.00 62.00 63.00 63.50 64.00 64.70 66.00 71.00 73.80 75.40 82.00 82.00 85.20 95.00 96.00 96.00 99.00 101.0 110.0 145.0
n = 17 mean = 38.6 median = 36.0 SD = 16.1 p = 0.96
Third Quartile = 54.90 First Quartile = 25.95
0.000 12.00 18.90 24.00 27.90 32.00 33.10 36.00 36.00 36.50 48.00 49.00 53.00 56.80 58.00 62.50 72.00
n = 98 mean = 124.2 median = 63.8 SD = 272 p = 0.0
Third Quartile = 101.2 First Quartile = 46.00
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 2500. 890.0 706.0 388.0 360.0 315.0 300.0 270.0 243.0 194.0 186.0
0.000 0.000 0.000 10.00 12.00 18.90 20.00 20.00 24.00 25.00 27.90 31.00 32.00 33.10 34.00 36.00 36.00 36.50 37.60 44.00 45.00 45.00 45.90 46.00 46.00 47.00 48.00 48.00 48.60 49.00 50.00 50.00 51.00 52.00 52.30 53.00 53.80 54.40 55.00 55.00 56.80 57.00 58.00 59.00 60.00 62.00 62.50 63.00 63.50 64.00 64.70 66.00 66.50 67.00 71.00 71.00 72.00 73.80 75.00 75.40 77.00 79.00 80.00 82.00 82.00 84.10 85.00 85.20 95.00 96.00 96.00 98.00 99.00 101.0 102.0 107.0 110.0 118.0 120.0 132.0 140.0 145.0 146.0 151.0 169.0 177.0 184.0 186.0 194.0 243.0 270.0 300.0 315.0 360.0 388.0 706.0 890.0 2500
n = 28 mean = 24.3 median = 10.0 SD = 49.2 p = 0.0
Third Quartile = 24.50 First Quartile = 0.000
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 250.0 92.70
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.800 7.800 8.000 10.00 10.00 10.00 14.80 15.00 15.00 15.00 20.00 26.00 33.60 41.00 50.00 54.60 92.70 250.0
n = 33 mean = 20.7 median = 17.1 SD = 14.5 p = 0.15
Third Quartile = 30.90 First Quartile = 8.750
0.000 0.000 4.400 4.600 6.000 6.500 7.000 7.500 10.00 10.20 11.80 12.00 12.00 12.80 14.00 14.40 17.10 22.00 22.70 23.00 24.00 24.10 28.10 30.00 30.00 31.80 34.00 35.80 36.50 40.00 48.00 50.00 51.80
n = 18 mean = 21.7 median = 23.0 SD = 11.2 p = 1.0
Third Quartile = 29.32 First Quartile = 13.72
0.000 7.600 8.000 11.40 14.50 15.00 17.90 18.00 22.00 24.00 24.40 26.00 27.00 28.00 33.30 36.00 38.00 40.00
n = 79 mean = 22.2 median = 15.8 SD = 30.9 p = 0.0
Third Quartile = 30.00 First Quartile = 7.500
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 250.0 92.70
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.400 4.600 4.800 6.000 6.500 7.000 7.500 7.600 7.800 8.000 8.000 10.00 10.00 10.00 10.00 10.20 11.40 11.80 12.00 12.00 12.80 14.00 14.40 14.50 14.80 15.00 15.00 15.00 15.00 17.10 17.90 18.00 20.00 22.00 22.00 22.70 23.00 24.00 24.00 24.10 24.40 26.00 26.00 27.00 28.00 28.10 30.00 30.00 31.80 33.30 33.60 34.00 35.80 36.00 36.50 38.00 40.00 40.00 41.00 48.00 50.00 50.00 51.80 54.60 92.70 250.0
n = 28 mean = 215.2 median = 148.0 SD = 192 p = 0.0
Third Quartile = 259.2 First Quartile = 98.50
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 890.0 706.0
66.00 67.00 75.00 78.00 79.00 84.10 98.00 100.0 120.0 120.0 132.0 132.0 140.0 146.0 150.0 151.0 177.0 186.0 189.0 194.0 227.0 270.0 300.0 360.0 388.0 400.0 706.0 890.0
n = 31 mean = 69.4 median = 60.0 SD = 28.3 p = 0.05
Third Quartile = 84.00 First Quartile = 50.00
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 145.0
20.00 44.00 45.00 45.90 46.00 48.00 50.00 50.00 51.00 51.00 52.00 53.80 54.40 55.00 59.00 60.00 60.00 63.00 66.00 71.00 73.80 75.40 82.00 84.00 95.00 96.00 96.00 110.0 115.0 133.0 145.0
n = 7 mean = 48.5 median = 58.0 SD = 16.1
27.90 31.00 36.00 58.00 60.00 62.50 64.10
n = 66 mean = 129.0 median = 78.5 SD = 146 p = 0.0
Third Quartile = 141.2 First Quartile = 54.85
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 890.0 706.0 400.0 388.0 360.0 300.0
20.00 27.90 31.00 36.00 44.00 45.00 45.90 46.00 48.00 50.00 50.00 51.00 51.00 52.00 53.80 54.40 55.00 58.00 59.00 60.00 60.00 60.00 62.50 63.00 64.10 66.00 66.00 67.00 71.00 73.80 75.00 75.40 78.00 79.00 82.00 84.00 84.10 95.00 96.00 96.00 98.00 100.0 110.0 115.0 120.0 120.0 132.0 132.0 133.0 140.0 145.0 146.0 150.0 151.0 177.0 186.0 189.0 194.0 227.0 270.0 300.0 360.0 388.0 400.0 706.0 890.0
n = 28 mean = 191.1 median = 136.0 SD = 198 p = 0.0
Third Quartile = 230.8 First Quartile = 76.00
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 890.0 706.0
0.000 31.00 45.00 46.00 55.00 67.00 75.00 79.00 80.00 84.10 98.00 118.0 120.0 132.0 140.0 146.0 151.0 169.0 177.0 186.0 194.0 243.0 270.0 300.0 360.0 388.0 706.0 890.0
n = 31 mean = 60.5 median = 55.0 SD = 22.3 p = 0.48
Third Quartile = 75.40 First Quartile = 45.90
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 0.000 145.0
0.000 10.00 20.00 20.00 25.00 44.00 45.00 45.90 46.00 48.00 50.00 51.00 52.00 53.80 54.40 55.00 59.00 60.00 63.00 64.70 66.00 71.00 73.80 75.40 82.00 95.00 96.00 96.00 99.00 110.0 145.0
n = 7 mean = 41.9 median = 40.0 SD = 18.4
12.00 27.90 36.00 40.00 56.80 58.00 62.50
n = 66 mean = 113.9 median = 66.5 SD = 146 p = 0.0
Third Quartile = 123.0 First Quartile = 46.00
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 890.0 706.0 388.0 360.0 300.0 270.0 243.0
0.000 0.000 10.00 12.00 20.00 20.00 25.00 27.90 31.00 36.00 40.00 44.00 45.00 45.00 45.90 46.00 46.00 48.00 50.00 51.00 52.00 53.80 54.40 55.00 55.00 56.80 58.00 59.00 60.00 62.50 63.00 64.70 66.00 67.00 71.00 73.80 75.00 75.40 79.00 80.00 82.00 84.10 95.00 96.00 96.00 98.00 99.00 110.0 118.0 120.0 132.0 140.0 145.0 146.0 151.0 169.0 177.0 186.0 194.0 243.0 270.0 300.0 360.0 388.0 706.0 890.0
n = 18 mean = 31.4 median = 12.5 SD = 59.7 p = 0.0
Third Quartile = 35.45 First Quartile = 0.000
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 250.0 92.70
0.000 0.000 0.000 0.000 0.000 0.000 8.000 10.00 10.00 15.00 15.00 15.00 20.00 33.60 41.00 54.60 92.70 250.0
n = 23 mean = 22.8 median = 22.7 SD = 15.0 p = 0.43
Third Quartile = 31.80 First Quartile = 10.20
0.000 6.500 7.000 7.500 10.00 10.20 12.00 12.00 12.80 14.00 17.10 22.70 23.00 24.10 28.10 30.00 30.00 31.80 35.80 40.00 48.00 50.00 51.80
n = 6 mean = 26.7 median = 25.2 SD = 14.3 p = 0.51
8.000 24.00 24.40 26.00 38.00 40.00
n = 47 mean = 26.6 median = 17.1 SD = 38.1 p = 0.0
Third Quartile = 33.60 First Quartile = 8.000
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 250.0 92.70
0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.500 7.000 7.500 8.000 8.000 10.00 10.00 10.00 10.20 12.00 12.00 12.80 14.00 15.00 15.00 15.00 17.10 20.00 22.70 23.00 24.00 24.10 24.40 26.00 28.10 30.00 30.00 31.80 33.60 35.80 38.00 40.00 40.00 41.00 48.00 50.00 51.80 54.60 92.70 250.0
n = 10 mean = 358.1 median = 100.5 SD = 757 p = 0.0
Third Quartile = 216.8 First Quartile = 77.75
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 2500
37.60 71.00 80.00 85.00 98.90 102.0 107.0 184.0 315.0 2500
n = 12 mean = 68.6 median = 59.5 SD = 35.6 p = 0.05
Third Quartile = 79.90 First Quartile = 48.95
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 170.0
34.00 47.00 48.60 50.00 52.30 57.00 62.00 63.50 64.00 85.20 90.00 170.0
n = 11 mean = 38.6 median = 36.0 SD = 15.8 p = 0.65
Third Quartile = 49.00 First Quartile = 24.00
18.90 22.00 24.00 32.00 33.10 36.00 36.50 48.00 49.00 53.00 72.00
n = 33 mean = 146.3 median = 57.0 SD = 426 p = 0.0
Third Quartile = 87.60 First Quartile = 37.05
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 2500. 315.0 184.0 170.0
18.90 22.00 24.00 32.00 33.10 34.00 36.00 36.50 37.60 47.00 48.00 48.60 49.00 50.00 52.30 53.00 57.00 62.00 63.50 64.00 71.00 72.00 80.00 85.00 85.20 90.00 98.90 102.0 107.0 170.0 184.0 315.0 2500
n = 10 mean = 354.5 median = 93.5 SD = 758 p = 0.0
Third Quartile = 216.8 First Quartile = 69.88
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 2500
37.60 66.50 71.00 77.00 85.00 102.0 107.0 184.0 315.0 2500
n = 12 mean = 62.2 median = 59.5 SD = 18.9 p = 0.40
Third Quartile = 77.50 First Quartile = 48.95
34.00 47.00 48.60 50.00 52.30 57.00 62.00 63.50 64.00 82.00 85.20 101.0
n = 11 mean = 36.6 median = 36.0 SD = 19.1 p = 0.91
Third Quartile = 49.00 First Quartile = 24.00
0.000 18.90 24.00 32.00 33.10 36.00 36.50 48.00 49.00 53.00 72.00
n = 33 mean = 142.5 median = 57.0 SD = 19.1 p = 0.0
Third Quartile = 83.50 First Quartile = 37.05
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 2500. 315.0 184.0
0.000 18.90 24.00 32.00 33.10 34.00 36.00 36.50 37.60 47.00 48.00 48.60 49.00 50.00 52.30 53.00 57.00 62.00 63.50 64.00 66.50 71.00 72.00 77.00 82.00 85.00 85.20 101.0 102.0 107.0 184.0 315.0 2500
n = 15 mean = 27.3 median = 10.0 SD = 62.9 p = 0.0
Third Quartile = 20.00 First Quartile = 0.000
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 250.0
0.000 0.000 0.000 0.000 0.000 0.000 10.00 10.00 15.00 15.00 15.00 20.00 33.60 41.00 250.0
n = 10 mean = 15.8 median = 13.1 SD = 12.8 p = 0.93
Third Quartile = 26.50 First Quartile = 4.550
0.000 4.400 4.600 6.000 11.80 14.40 22.00 24.00 34.00 36.50
n = 12 mean = 19.7 median = 18.0 SD = 19.1 p = 0.91
0.000 7.600 11.40 14.50 15.00 17.90 18.00 22.00 27.00 28.00 33.30 36.00
n = 37 mean = 21.6 median = 15.0 SD = 40.5 p = 0.91
Third Quartile = 25.50 First Quartile = 4.500
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 250.0
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.400 4.600 6.000 7.600 10.00 10.00 11.40 11.80 14.40 14.50 15.00 15.00 15.00 15.00 17.90 18.00 20.00 22.00 22.00 24.00 27.00 28.00 33.30 33.60 34.00 36.00 36.50 41.00 250.0
n = 64 mean = 3061.3 median = 2500.0 SD = 2670 p = 0.0
Third Quartile = 3500. First Quartile = 1337.
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 1.6000E+04 1.2000E+04 9000. 9000
400.0 450.0 800.0 1000. 1000. 1000. 1000. 1000. 1100. 1171. 1200. 1200. 1200. 1300. 1317. 1333. 1350. 1400. 1500. 1500. 1500. 1500. 2000. 2000. 2000. 2200. 2300. 2400. 2500. 2500. 2500. 2500. 2500. 2500. 2500. 2500. 2500. 2600. 2700. 2700. 2900. 2900. 3000. 3000. 3000. 3200. 3300. 3500. 3500. 3500. 4000. 4000. 4500. 5000. 5000. 5000. 5000. 5500. 5500. 6000. 9000. 9000. 1.2000E+04 1.6000E+04
n = 60 mean = 1032.0 median = 1000 SD = 491 p = 0.52
Third Quartile = 1400. First Quartile = 750.0
100.0 160.0 200.0 250.0 250.0 270.0 400.0 400.0 500.0 500.0 500.0 500.0 526.0 723.0 750.0 750.0 750.0 800.0 800.0 850.0 900.0 900.0 995.0 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1050. 1200. 1200. 1200. 1200. 1200. 1200. 1200. 1200. 1232. 1250. 1450. 1462. 1500. 1500. 1500. 1500. 1500. 1700. 1800. 1800. 1800. 1800. 2000. 2000. 2000.
n = 19 mean = 459 median = 404.0 SD = 189 p = 0.83
Third Quartile = 600.0 First Quartile = 350.0
129.0 200.0 250.0 260.0 350.0 350.0 400.0 400.0 400.0 404.0 472.0 500.0 500.0 600.0 600.0 625.0 715.0 750.0 816.0
n = 143 mean = 1866.2 median = 1200.0 SD = 2113 p = 0.0
100.0 129.0 160.0 200.0 200.0 250.0 250.0 250.0 260.0 270.0 350.0 350.0 400.0 400.0 400.0 400.0 400.0 400.0 404.0 450.0 472.0 500.0 500.0 500.0 500.0 500.0 500.0 526.0 600.0 600.0 625.0 715.0 723.0 750.0 750.0 750.0 750.0 800.0 800.0 800.0 816.0 850.0 900.0 900.0 995.0 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1050. 1100. 1171. 1200. 1200. 1200. 1200. 1200. 1200. 1200. 1200. 1200. 1200. 1200. 1232. 1250. 1300. 1317. 1333. 1350. 1400. 1450. 1462. 1500. 1500. 1500. 1500. 1500. 1500. 1500. 1500. 1500. 1700. 1800. 1800. 1800. 1800. 2000. 2000. 2000. 2000. 2000. 2000. 2200. 2300. 2400. 2500. 2500. 2500. 2500. 2500. 2500. 2500. 2500. 2500. 2600. 2700. 2700. 2900. 2900. 3000. 3000. 3000. 3200. 3300. 3500. 3500. 3500. 4000. 4000. 4500. 5000. 5000. 5000. 5000. 5500. 5500. 6000. 9000. 9000. 1.2000E+04 1.6000E+04
n = 48 mean = 5050 median = 3575 SD = 4676 p = 0.0
Third Quartile = 5425. First Quartile = 2745.
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 2.4300E+04 2.3500E+04 1.5600E+04 1.1500E+04
2094. 2100. 2191. 2200. 2200. 2200. 2378. 2400. 2550. 2600. 2666. 2700. 2880. 2900. 2916. 2961. 3044. 3099. 3100. 3278. 3300. 3300. 3302. 3500. 3650. 3800. 3859. 3900. 4000. 4000. 4100. 4409. 4500. 4500. 4600. 5200. 5500. 5600. 5800. 5800. 6021. 6700. 7700. 8000. 1.1500E+04 1.5600E+04 2.3500E+04 2.4300E+04
n = 30 mean = 1618.1 median = 1724.0 SD = 386 p = 0.14
Third Quartile = 1976. First Quartile = 1222
851.0 1000. 1040. 1089. 1105. 1149. 1162. 1242. 1285. 1358. 1513. 1600. 1687. 1706. 1723. 1725. 1744. 1812. 1819. 1898. 1924. 1927. 1972. 1986. 2011. 2018. 2030. 2049. 2050. 2067
n = 6 mean = 726.0 median = 738.0 SD = 61.4
622.0 700.0 713.0 763.0 769.0 789.0
n = 84 mean = 3515.4 median = 2289.0 SD = 3957 p = 0.0
Third Quartile = 3890. First Quartile = 1724.
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 2.4300E+04 2.3500E+04 1.5600E+04 1.1500E+04 8000. 7700.
622.0 700.0 713.0 763.0 769.0 789.0 851.0 1000. 1040. 1089. 1105. 1149. 1162. 1242. 1285. 1358. 1513. 1600. 1687. 1706. 1723. 1725. 1744. 1812. 1819. 1898. 1924. 1927. 1972. 1986. 2011. 2018. 2030. 2049. 2050. 2067. 2094. 2100. 2191. 2200. 2200. 2200. 2378. 2400. 2550. 2600. 2666. 2700. 2880. 2900. 2916. 2961. 3044. 3099. 3100. 3278. 3300. 3300. 3302. 3500. 3650. 3800. 3859. 3900. 4000. 4000. 4100. 4409. 4500. 4500. 4600. 5200. 5500. 5600. 5800. 5800. 6021. 6700. 7700. 8000. 1.1500E+04 1.5600E+04 2.3500E+04 2.4300E+04
n = 17 mean = 4488 median = 3500 SD = 2556 p = 0.0
Third Quartile = 5000. First Quartile = 2600.
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 1.2000E+04 9000
2300. 2500. 2500. 2500. 2700. 3300. 3500. 3500. 3500. 4000. 4000. 5000. 5000. 5000. 6000. 9000. 1.2000E+04
n = 30 mean = 1375.2 median = 1225.0 SD = 353 p = 0.07
Third Quartile = 1725. First Quartile = 1000
900.0 995.0 1000. 1000. 1000. 1000. 1000. 1000. 1050. 1200. 1200. 1200. 1200. 1200. 1200. 1250. 1462. 1500. 1500. 1500. 1500. 1500. 1700. 1800. 1800. 1800. 1800. 2000. 2000. 2000.
n = 13 mean = 544.8 median = 500.0 SD = 154 p = 0.85
Third Quartile = 670.0 First Quartile = 402.0
350.0 350.0 400.0 404.0 472.0 500.0 500.0 600.0 600.0 625.0 715.0 750.0 816.0
n = 60 mean = 2077.3 median = 1481.0 SD = 154 p = 0.0
Third Quartile = 2500. First Quartile = 996.2
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 1.2000E+04 9000. 6000. 5000. 5000. 5000
350.0 350.0 400.0 404.0 472.0 500.0 500.0 600.0 600.0 625.0 715.0 750.0 816.0 900.0 995.0 1000. 1000. 1000. 1000. 1000. 1000. 1050. 1200. 1200. 1200. 1200. 1200. 1200. 1250. 1462. 1500. 1500. 1500. 1500. 1500. 1700. 1800. 1800. 1800. 1800. 2000. 2000. 2000. 2300. 2500. 2500. 2500. 2700. 3300. 3500. 3500. 3500. 4000. 4000. 5000. 5000. 5000. 6000. 9000. 1.2000E+04
n = 55 mean = 176.6 median = 110.0 SD = 197 p = 0.0
Third Quartile = 175.0 First Quartile = 89.30
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 1296. 700.0 656.0 400.0 311.0
38.00 57.00 60.00 70.00 73.00 74.00 75.00 77.00 81.00 81.00 83.00 84.00 88.00 89.30 89.80 96.00 97.00 100.0 100.0 100.0 100.0 100.0 100.0 105.0 105.0 110.0 110.0 110.0 120.0 122.0 125.0 125.0 129.0 135.0 147.0 150.0 150.0 150.0 161.0 170.0 171.0 175.0 195.0 204.0 221.0 233.0 235.0 240.0 260.0 281.0 311.0 400.0 656.0 700.0 1296
n = 50 mean = 70.6 median = 70.0 SD = 23.6 p = 0.39
Third Quartile = 84.75 First Quartile = 50.00
26.90 32.00 33.00 42.70 43.00 45.00 45.90 48.00 49.00 50.00 50.00 50.00 50.00 52.00 52.80 53.00 53.90 56.00 56.70 60.00 60.00 63.00 64.60 65.00 70.00 70.00 73.00 74.40 78.20 79.60 80.00 80.00 80.00 80.00 81.00 81.00 83.00 83.00 90.00 91.00 95.60 96.00 98.00 100.0 100.0 103.0 105.0 106.0 120.0 130.0
n = 18 mean = 43.6 median = 39.8 SD = 15.4 p = 0.51
Third Quartile = 51.50 First Quartile = 31.88
25.00 25.00 29.50 30.00 32.50 33.60 34.00 36.00 38.50 41.00 46.70 50.00 50.00 50.00 56.00 56.00 72.00 80.00
n = 123 mean = 114.1 median = 81.0 SD = 15.4 p = 0.0
Third Quartile = 110.0 First Quartile = 53.00
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 1296. 700.0 656.0 400.0 311.0 281.0 260.0 240.0 235.0 233.0 221.0 204.0
25.00 25.00 26.90 29.50 30.00 32.00 32.50 33.00 33.60 34.00 36.00 38.00 38.50 41.00 42.70 43.00 45.00 45.90 46.70 48.00 49.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 52.00 52.80 53.00 53.90 56.00 56.00 56.00 56.70 57.00 60.00 60.00 60.00 63.00 64.60 65.00 70.00 70.00 70.00 72.00 73.00 73.00 74.00 74.40 75.00 77.00 78.20 79.60 80.00 80.00 80.00 80.00 80.00 81.00 81.00 81.00 81.00 83.00 83.00 83.00 84.00 88.00 89.30 89.80 90.00 91.00 95.60 96.00 96.00 97.00 98.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 103.0 105.0 105.0 105.0 106.0 110.0 110.0 110.0 120.0 120.0 122.0 125.0 125.0 129.0 130.0 135.0 147.0 150.0 150.0 150.0 161.0 170.0 171.0 175.0 195.0 204.0 221.0 233.0 235.0 240.0 260.0 281.0 311.0 400.0 656.0 700.0 1296
n = 56 mean = 117.9 median = 89.9 SD = 107 p = 0.0
Third Quartile = 149.2 First Quartile = 59.25
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 700.0 311.0
0.000 0.000 0.000 9.900 28.00 28.00 35.00 38.00 46.00 48.00 50.00 53.00 57.00 59.00 60.00 70.00 70.00 72.00 72.00 74.00 75.00 75.00 75.00 81.00 83.00 84.00 89.30 89.80 90.00 94.00 95.00 97.00 100.0 105.0 105.0 110.0 122.0 125.0 125.0 129.0 135.0 147.0 150.0 165.0 165.0 171.0 176.0 195.0 221.0 233.0 235.0 240.0 260.0 281.0 311.0 700.0
n = 50 mean = 64.6 median = 63.8 SD = 30.1 p = 0.60
Third Quartile = 81.50 First Quartile = 49.75
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 0.000 0.000 0.000 0.000 130.0
0.000 0.000 0.000 0.000 26.90 32.00 33.00 40.00 43.00 45.00 45.90 49.00 50.00 50.00 50.00 50.00 52.00 52.80 53.00 53.90 56.00 56.70 60.00 60.00 63.00 64.60 65.00 70.00 73.00 74.40 78.20 79.60 80.00 80.00 80.00 80.00 81.00 81.00 83.00 83.00 95.60 96.00 98.00 100.0 100.0 103.0 105.0 106.0 120.0 130.0
n = 19 mean = 38.3 median = 36.0 SD = 18.7 p = 0.67
Third Quartile = 50.00 First Quartile = 29.50
0.000 17.00 18.00 26.00 29.50 30.00 30.00 32.50 33.60 36.00 38.50 40.00 41.00 46.70 50.00 50.00 56.00 72.00 80.00
n = 125 mean = 84.5 median = 72.0 SD = 80.6 p = 0.0
Third Quartile = 99.00 First Quartile = 45.45
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 700.0 311.0 281.0 260.0 240.0 235.0 233.0 221.0 195.0
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.900 17.00 18.00 26.00 26.90 28.00 28.00 29.50 30.00 30.00 32.00 32.50 33.00 33.60 35.00 36.00 38.00 38.50 40.00 40.00 41.00 43.00 45.00 45.90 46.00 46.70 48.00 49.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 52.00 52.80 53.00 53.00 53.90 56.00 56.00 56.70 57.00 59.00 60.00 60.00 60.00 63.00 64.60 65.00 70.00 70.00 70.00 72.00 72.00 72.00 73.00 74.00 74.40 75.00 75.00 75.00 78.20 79.60 80.00 80.00 80.00 80.00 80.00 81.00 81.00 81.00 83.00 83.00 83.00 84.00 89.30 89.80 90.00 94.00 95.00 95.60 96.00 97.00 98.00 100.0 100.0 100.0 103.0 105.0 105.0 105.0 106.0 110.0 120.0 122.0 125.0 125.0 129.0 130.0 135.0 147.0 150.0 165.0 165.0 171.0 176.0 195.0 221.0 233.0 235.0 240.0 260.0 281.0 311.0 700.0
n = 47 mean = 18.8 median = 16.0 SD = 19.2 p = 0.0
Third Quartile = 25.00 First Quartile = 0.000
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 73.60 70.00
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.5000 5.500 7.000 9.600 11.20 12.00 15.00 15.80 16.00 17.50 20.00 20.00 20.00 21.30 21.60 23.90 24.00 24.40 25.00 25.00 25.00 30.00 30.00 35.00 42.00 42.90 44.00 45.50 48.50 60.00 70.00 73.60
n = 33 mean = 19.0 median = 16.8 SD = 30.1 p = 0.45
Third Quartile = 31.75 First Quartile = 6.750
0.000 0.000 0.000 0.000 0.000 5.000 5.500 6.500 7.000 7.500 9.000 10.00 12.00 14.40 14.40 15.00 16.80 16.80 22.00 22.60 25.00 25.00 25.00 30.00 31.50 32.00 35.00 35.00 36.50 37.00 40.00 41.00 50.00
n = 18 mean = 20.1 median = 15.3 SD = 14.0 p = 0.07
Third Quartile = 31.25 First Quartile = 12.25
0.000 0.000 8.100 10.00 13.00 13.40 15.00 15.00 15.00 15.60 16.30 16.30 30.00 30.00 35.00 39.00 40.00 50.00
n = 98 mean = 19.1 median = 15.9 SD = 16.8 p = 0.0
Third Quartile = 30.00 First Quartile = 5.375
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 73.60 70.00
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.5000 5.000 5.500 5.500 6.500 7.000 7.000 7.500 8.100 9.000 9.600 10.00 10.00 11.20 12.00 12.00 13.00 13.40 14.40 14.40 15.00 15.00 15.00 15.00 15.00 15.60 15.80 16.00 16.30 16.30 16.80 16.80 17.50 20.00 20.00 20.00 21.30 21.60 22.00 22.60 23.90 24.00 24.40 25.00 25.00 25.00 25.00 25.00 25.00 30.00 30.00 30.00 30.00 30.00 31.50 32.00 35.00 35.00 35.00 35.00 36.50 37.00 39.00 40.00 40.00 41.00 42.00 42.90 44.00 45.50 48.50 50.00 50.00 60.00 70.00 73.60
n = 43 mean = 180.0 median = 110.0 SD = 217 p = 0.0
Third Quartile = 171.0 First Quartile = 89.30
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 1296. 700.0 656.0
57.00 60.00 73.00 74.00 77.00 81.00 81.00 83.00 84.00 88.00 89.30 89.80 96.00 97.00 100.0 100.0 100.0 100.0 100.0 105.0 110.0 110.0 120.0 122.0 125.0 125.0 129.0 135.0 147.0 150.0 161.0 170.0 171.0 175.0 204.0 221.0 233.0 235.0 240.0 281.0 656.0 700.0 1296.
n = 26 mean = 70.1 median = 71.5 SD = 18.3 p = 0.83
Third Quartile = 81.50 First Quartile = 52.10
42.70 43.00 45.90 49.00 50.00 50.00 52.80 56.00 56.70 63.00 64.60 65.00 70.00 73.00 74.40 79.60 80.00 80.00 81.00 81.00 83.00 90.00 91.00 96.00 98.00 106.0
n = 6 mean = 40.9 median = 40.4 SD = 11.8
25.00 33.60 34.00 46.70 50.00 56.00
n = 75 mean = 40.9 median = 40.4 SD = 174 p = 0.0
Third Quartile = 125.0 First Quartile = 64.60
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 1296. 700.0 656.0 281.0 240.0 235.0 233.0 221.0
25.00 33.60 34.00 42.70 43.00 45.90 46.70 49.00 50.00 50.00 50.00 52.80 56.00 56.00 56.70 57.00 60.00 63.00 64.60 65.00 70.00 73.00 73.00 74.00 74.40 77.00 79.60 80.00 80.00 81.00 81.00 81.00 81.00 83.00 83.00 84.00 88.00 89.30 89.80 90.00 91.00 96.00 96.00 97.00 98.00 100.0 100.0 100.0 100.0 100.0 105.0 106.0 110.0 110.0 120.0 122.0 125.0 125.0 129.0 135.0 147.0 150.0 161.0 170.0 171.0 175.0 204.0 221.0 233.0 235.0 240.0 281.0 656.0 700.0 1296.
n = 44 mean = 120.9 median = 92.0 SD = 217 p = 0.0
Third Quartile = 149.2 First Quartile = 70.50
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 700.0 281.0
0.000 0.000 28.00 28.00 35.00 46.00 48.00 53.00 57.00 59.00 70.00 72.00 72.00 74.00 75.00 75.00 81.00 83.00 84.00 89.30 89.80 90.00 94.00 95.00 97.00 100.0 105.0 122.0 125.0 125.0 129.0 135.0 147.0 150.0 165.0 165.0 171.0 176.0 221.0 233.0 235.0 240.0 281.0 700.0
n = 26 mean = 63.0 median = 64.8 SD = 16.8 p = 0.37
Third Quartile = 80.25 First Quartile = 49.75
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 0.000 0.000
0.000 0.000 40.00 43.00 45.90 49.00 50.00 50.00 52.80 56.00 56.70 63.00 64.60 65.00 70.00 73.00 74.40 79.60 80.00 80.00 81.00 81.00 83.00 96.00 98.00 106.0
n = 6 mean = 25.7 median = 28.0 SD = 15.8
0.000 18.00 26.00 30.00 33.60 46.70
n = 76 mean = 93.5 median = 75.0 SD = 91.3 p = 0.0
Third Quartile = 103.8 First Quartile = 49.25
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 700.0 281.0 240.0 235.0 233.0 221.0
0.000 0.000 0.000 0.000 0.000 18.00 26.00 28.00 28.00 30.00 33.60 35.00 40.00 43.00 45.90 46.00 46.70 48.00 49.00 50.00 50.00 52.80 53.00 56.00 56.70 57.00 59.00 63.00 64.60 65.00 70.00 70.00 72.00 72.00 73.00 74.00 74.40 75.00 75.00 79.60 80.00 80.00 81.00 81.00 81.00 83.00 83.00 84.00 89.30 89.80 90.00 94.00 95.00 96.00 97.00 98.00 100.0 105.0 106.0 122.0 125.0 125.0 129.0 135.0 147.0 150.0 165.0 165.0 171.0 176.0 221.0 233.0 235.0 240.0 281.0 700.0
n = 35 mean = 19.0 median = 16.0 SD = 20.1 p = 0.01
Third Quartile = 30.00 First Quartile = 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.5000 7.000 9.600 15.00 16.00 20.00 20.00 21.30 23.90 24.40 25.00 25.00 25.00 30.00 35.00 42.00 42.90 44.00 45.50 48.50 70.00 73.60
n = 15 mean = 28.3 median = 30.0 SD = 12.2 p = 0.90
Third Quartile = 37.00 First Quartile = 15.00
7.500 12.00 14.40 15.00 25.00 25.00 25.00 30.00 31.50 35.00 36.50 37.00 40.00 41.00 50.00
n = 5 mean = 17.6 median = 16.3 SD = 14.3
0.000 15.60 16.30 16.30 40.00
n = 55 mean = 21.4 median = 20.0 SD = 18.6 p = 0.02
Third Quartile = 35.00 First Quartile = 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.5000 7.000 7.500 9.600 12.00 14.40 15.00 15.00 15.60 16.00 16.30 16.30 20.00 20.00 21.30 23.90 24.40 25.00 25.00 25.00 25.00 25.00 25.00 30.00 30.00 31.50 35.00 35.00 36.50 37.00 40.00 40.00 41.00 42.00 42.90 44.00 45.50 48.50 50.00 70.00 73.60
n = 12 mean = 163.7 median = 130.0 SD = 109 p = 0.35
Third Quartile = 243.8 First Quartile = 81.25
38.00 70.00 75.00 100.0 105.0 110.0 150.0 150.0 195.0 260.0 311.0 400.0
n = 24 mean = 70.1 median = 65.0 SD = 28.7 p = 0.47
Third Quartile = 98.90 First Quartile = 50.00
26.90 32.00 33.00 45.00 48.00 50.00 50.00 52.00 53.00 53.90 60.00 60.00 70.00 78.20 80.00 80.00 83.00 95.60 100.0 100.0 103.0 105.0 120.0 130.0
n = 12 mean = 45.0 median = 39.8 SD = 17.3 p = 0.63
Third Quartile = 54.50 First Quartile = 30.62
25.00 29.50 30.00 32.50 36.00 38.50 41.00 50.00 50.00 56.00 72.00 80.00
n = 48 mean = 87.8 median = 70.0 SD = 17.3 p = 0.0
Third Quartile = 102.2 First Quartile = 45.75
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 400.0 311.0 260.0 195.0
25.00 26.90 29.50 30.00 32.00 32.50 33.00 36.00 38.00 38.50 41.00 45.00 48.00 50.00 50.00 50.00 50.00 52.00 53.00 53.90 56.00 60.00 60.00 70.00 70.00 72.00 75.00 78.20 80.00 80.00 80.00 83.00 95.60 100.0 100.0 100.0 103.0 105.0 105.0 110.0 120.0 130.0 150.0 150.0 195.0 260.0 311.0 400.0
n = 12 mean = 107.0 median = 72.5 SD = 98.3 p = 0.22
Third Quartile = 173.8 First Quartile = 41.00
0.000 9.900 38.00 50.00 60.00 70.00 75.00 105.0 110.0 195.0 260.0 311.0
n = 24 mean = 66.3 median = 60.0 SD = 39.4 p = 0.95
Third Quartile = 98.90 First Quartile = 46.25
0.000 0.000 26.90 32.00 33.00 45.00 50.00 50.00 52.00 53.00 53.90 60.00 60.00 78.20 80.00 80.00 83.00 95.60 100.0 100.0 103.0 105.0 120.0 130.0
n = 12 mean = 44.3 median = 39.8 SD = 18.3 p = 0.83
Third Quartile = 54.50 First Quartile = 30.62
17.00 29.50 30.00 32.50 36.00 38.50 41.00 50.00 50.00 56.00 72.00 80.00
n = 48 mean = 70.8 median = 54.9 SD = 58.8 p = 0.0
Third Quartile = 92.45 First Quartile = 36.50
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 311.0 260.0 195.0
0.000 0.000 0.000 9.900 17.00 26.90 29.50 30.00 32.00 32.50 33.00 36.00 38.00 38.50 41.00 45.00 50.00 50.00 50.00 50.00 50.00 52.00 53.00 53.90 56.00 60.00 60.00 60.00 70.00 72.00 75.00 78.20 80.00 80.00 80.00 83.00 95.60 100.0 100.0 103.0 105.0 105.0 110.0 120.0 130.0 195.0 260.0 311.0
n = 12 mean = 18.1 median = 16.7 SD = 16.1 p = 0.28
Third Quartile = 23.40 First Quartile = 6.925
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 60.00
0.000 0.000 5.500 11.20 12.00 15.80 17.50 20.00 21.60 24.00 30.00 60.00
n = 17 mean = 11.5 median = 9.0 SD = 11.3 p = 0.49
Third Quartile = 19.40 First Quartile = 0.000
0.000 0.000 0.000 0.000 0.000 5.000 5.500 6.500 9.000 10.00 14.40 16.80 16.80 22.00 22.60 32.00 35.00
n = 12 mean = 22.8 median = 15.0 SD = 13.5 p = 0.14
8.100 10.00 13.00 13.40 15.00 15.00 15.00 30.00 30.00 35.00 39.00 50.00
n = 41 mean = 16.7 median = 15.0 SD = 14.0 p = 0.02
Third Quartile = 23.30 First Quartile = 6.000
Outliers are 1.5*IQR above the third quartile or below the first quartile. The following data points are outliers: 60.00 50.00
0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.000 5.500 5.500 6.500 8.100 9.000 10.00 10.00 11.20 12.00 13.00 13.40 14.40 15.00 15.00 15.00 15.80 16.80 16.80 17.50 20.00 21.60 22.00 22.60 24.00 30.00 30.00 30.00 32.00 35.00 35.00 39.00 50.00 60.00